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Introduction

Why Electric Vehicles (EVs)?
− Energy Independence
− Reduced environmental impacts
− Lots of fun to drive

“We can break our dependence on oil…and become the 
first country to have one million electric vehicles on the 
road by 2015,” 
− President Barack Hussein Obama

EVs in the US 
− 1500 Tesla Roadsters
− 11000 Nissan LEAFs
− 9000 Chevy Volts (PHEV)

Introduction

Additional EVs for sale in the US in 2012
− Mitsubishi MiEV
− Ford Focus EV
− Tesla Model S
− Toyota Rav4 EV
− Honda Fit EV

Potential for tens of thousands of EVs sold in 2012
− Hundreds of thousands of EVs at least by 2015

This will require hundreds of additional MWh per day

This can add hundreds of MW of load
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Electric Vehicle Charging Issues with the Grid

Energy Requirements:
− 100,000 EVs will require around 1,000 MWh energy per 

day
Power Requirements:

− With 3.3 kW charging, 100,000 EVs can add up to 330 
MW load

− With 6.6 kW charging, 660 MW load
Grid Issues with charging EVs:

− If charging occurs on peak, supply shortages and extreme 
energy prices can be experienced

− If charging occurs off peak, these problems may be 
alleviated

Distribution System Issues with EV Charging

EVs are more likely to clump in certain neighborhoods 
which will lead to much higher penetration on the 
distribution system then on the grid in general
− Loads can grow unexpectedly when EV owners visit each 

other
Charging on peak can cause:

− Line and transformer overloads
− Increased line losses
− Voltage sags

Charging off peak can still reduce distribution transformer 
life from eliminating cool down periods

Smart Charging Control

Many of the issues with EV charging can be addressed through 
controlled charging

Controlled charging allows EV loads to be reduced when 
needed and can facilitate peak shaving 

Charging control can also facilitate vehicle-to-grid applications 
such as:
− Regulation
− Load following
− Spinning reserves
− Non-spinning reserves

Charge control can be either:
− Incremental adjustment of the charge rate
− Discrete switching of EVs

Incremental Charge Control

EV charge rate can be set to any level between zero and 
the charger maximum

Can be accomplished in a variety of ways:
− Special hardware installed in the EV: Utility or an 

aggregator sends a signal directly to the EVs internal 
charger to set the power draw level

− Pilot signal adjustment on SAE 1772 chargers: Utility or 
aggregator sends a signal to the charging station which 
tells the EV how much power it can draw

Allows:
− Utilities to reduce charging of EVs for peak shaving as 

needed
− EVs to perform V2G regulation, load following, and 

reserves
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V2G Through Incremental Charge Rate 
Adjustment

Involves adjusting the charge 
rate around a fixed 
scheduled rate called the 
Preferred Operating Point 
(POP)

Can perform regulation up and 
reserves by decreasing from 
the POP

Can perform regulation down 
and reserves by increasing 
above the POP
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V2G Using Discrete Switching of EVs

Involves switching EVs on and off to make the aggregate EV 
charge rate match the regulation signal but with discrete 
switching of EVs rather than incremental adjustment

For each scheduling period, each EV is assigned a target 
percentage of the total aggregator energy dispatched during 
that period
− This is based on the EVs schedule using V2G optimization 

algorithms
− Gives each EV a priority level

The EVs are then divided into two lists based on priority:
− Turn Off List: This list is for the EVs with the highest priority. 

They start the period turned on to meet the POP. When 
regulation up is needed the EV with at the bottom of the list is 
turned off and added to the bottom of the Turn On List

− Turn On List: This list is for EVs with lower priorities. They are 
initially off. When regulation down is needed, the EV at the top of 
the list is turned on and added to the top of the Turn Off List

After a specified number of periods, the priorities are 
recalculated and the lists reformed

Visualization with A Group of 100 EVs

Lists are populated based on 
priority

A regulation up dispatch 
signal is received that 
requires two EVs to turn off

A regulation up dispatch 
signal is received that 
requires 1 EV to turn off

A regulation down dispatch 
signal is received that 
requires 1 EV to turn on

A regulation down dispatch 
signal is received that 
requires two EVs to turn on
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Case Study: Smart Charging to Flatten Distribution Load 
Profile and Minimize Losses Using Incremental Charge 
Adjustment

Looks at charge control with the objectives 
of:
− Feeder loss minimization
− Feeder load variance minimization
− Feeder load factor maximization

Compares with uncontrolled charging

Uses a nine bus feeder with different levels 
of PHEV penetration

PHEVs charge between 6 pm and 6 am

Each PHEV charges 10 kWh at 1.8 kW
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Results: Charging Profiles
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Case Study Conclusions

Minimizing losses, maximizing load factor, and minimizing 
load variance give nearly identical EV charging profiles

Smart charge control can prevent EVs from charging on 
peak if possible

EV smart charging also reduces distribution system losses

Optimal V2G Scheduling

Performed from an aggregator perspective
− Aggregator can be a utility or a third party

Maximizes the profits (OptComb V2G Scheduling 
Algorithm)
− Assumes revenues come from:

• A percentage of the V2G services provided
• Markup on the wholesale price of energy

− Costs are constant
Considers selling V2G:

− Regulation down
− Regulation up
− Responsive Reserves
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V2G Optimization Constraints

Charger limits
− Set either by the maximum charge rate of the internal charger or the 

maximum rate of the charging station
Battery capacity limits

− Cannot charge beyond a 90% SOC limit for battery life
− Often set by OEMs

EV availability constraints
− Forecasted transport profiles with associated probabilities
− Uses the expected values of available EVs
− EVs can leave unexpectedly and must be compensated

Ancillary service constraints
− Regulation up and responsive reserve capacity cannot be greater than the 

POP
− POP and all capacities must be greater than zero

System Constraints
− System load constraint: Maximum POP inversely proportional to the system 

forecasted load (OptLoad Algorithm)
− Real time price constraint: Maximum POP inversely proportional to the 

system forecasted price (OptPrice Algorithm)
18

Obligatory Equations

Where:

In is the income of the aggregator

C is aggregator costs

Mk is aggregator markup over wholesale 
energy price

α is the percentage of regulation revenue 
taken by the aggregator

SOCI,i is the initial state of charge of the ith 

EV

PRU(t) is the forecasted price of regulation up 
for time t

PRD(t) is the forecasted price of regulation 
down for time t
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Case Study: V2G Optimization in Houston, TX

Compared the optimal V2G scheduling algorithms over a from 
July 20, 2010 to October 21, 2010
− Aggregator receives 20% of ancillary services revenues and 

0.01$/kWh over the price of energy
Considers 24 hour scheduling of EV charging based on most 

probable driving profiles

Uses ERCOT market and system data

Driving distances taken from National Highway Travel Survey
− Hypothetical Group of 10000 EVs

• 500 Tesla Roadsters
• 2000 Th!nk Citys
• 2500 Mitsubishi i-MiEVs
• 2000 BMW Mini-Es
• 3000 Nissan Leafs
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Examining August 2, 2010
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Profile Results OptLoad and 
OptPrice
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Customer Costs
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Communication Signals

Dispatch 
Algorithm

Avg. Signals Per 
Car Per Hour

Incremental 
Dispatch 188

Single Dispatch 
List Recalculation 52

Fifth Dispatch List 
Recalculation 12

Case Study Conclusions

V2G can provide significant regulation and reserves 
capacities

V2G generates valuable revenues for both customers and 
the aggregators

Customers can also receive significant benefits which 
gives an incentive to participate in V2G programs

Discrete dispatch reduces the communication burden by 
over 90%

V2G On Constrained Distribution Systems

The optimization algorithms to not consider distribution 
system impacts

These can be included through a feeder specific load factor 
constraint

This load factor constraint can then be developed to 
integrate into the optimal V2G formulation
− Keeps load factor above a certain desirable level while 

performing V2G
− Gives the OptFeeder Scheduling Algorithm



3/19/2012

8

Case Study: V2G on Constrained Distribution 
Feeders

Same EV group on the ERCOT system
− 130 day period

EVs distributed on 50 test feeders with a penetration level 
of 50%
− Three types of feeders

Compares the four algorithms for
− Feeder voltages, losses, and overloads

Feeder Type 1

There are 10 systems of this type. Load 
buses are 2-9. 

Feeder Type 2

There are 20 systems of this type. Load 
buses are 2-18. 

Feeder Type 3

There are 20 systems of this type. Load 
buses are 2-13. 
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Case Study Results: Losses 

Feeder Base OptFeeder OptComb OptLoad OptPrice
Total 2,350 2,757 2,856 2,835 2,843
T1 257 301 311 309 310
T2 1,146 1,353 1,403 1,392 1,396
T3 947 1,104 1,142 1,134 1,137

LINE LOSSES BY ALGORITHM (MWH)

Feeder Vs. OptComb Vs. OptLoad Vs. OptPrice
Total 3.48% 2.75% 3.02%

T1 3.41% 2.66% 2.93%
T2 3.60% 2.83% 3.12%
T3 3.35% 2.66% 2.92%

PERCENTAGE IMPROVEMENT OF OPTFEEDER VERSUS OTHER ALGORITHMS

Case Study Results: Line Currents and Overloads

Feeder Base OptFeeder OptComb OptLoad OptPrice
T1 69.2 75.9 91.1 88.1 95.3
T2 141.9 154.0 199.8 187.3 199.8
T3 104.6 109.8 145.4 134.0 139.1

MAXIMUM LINE CURRENTS BY ALGORITHM (A)

Feeder Base OptFeeder OptComb OptLoad OptPrice
Total 0 0 35 3 22
T1 0 0 0 0 0
T2 0 0 32 3 22
T3 0 0 3 0 0

NUMBER OF LINE OVERLOADS DURING THE SIMULATION PERIOD

Case Study Results: Voltages

Feeder Base OptFeeder OptComb OptLoad OptPrice
T1 0.956 0.953 0.943 0.946 0.940
T2 0.957 0.953 0.939 0.943 0.941
T3 0.953 0.950 0.933 0.938 0.935

MINIMUM NODE VOLTAGES BY ALGORITHM (PU)

Feeder Base OptFeeder OptComb OptLoad OptPrice
T1 0 0 263 51 186
T2 0 0 308 43 220
T3 0 0 2751 1083 2077

OCCURRENCES OF ANSI C84.1 RANGE A INCIDENTS BY ALGORITHM

Economic Results
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Case Study Conclusions

Feeder load factor constraint:
− Eliminates overloads
− Eliminates voltage sags
− Reduces losses

The total revenues and profits are reduced

Final Conclusions

Controlled charging can be implemented in many different 
ways

Smart charging of EVs can shift peaks and extend 
equipment life

V2G can be implemented with minimal infrastructure while 
providing significant benefits to customers and utilities 
even when the distribution system is constrained

Thank you.

Questions?


