

## Outline Introduction Electric Vehicle Charging Issues Intelligent Charge Control Technologies Smart Charging on Distribution Systems Vehicle-to-Grid Optimization





### Electric Vehicle Charging Issues with the Grid

**Energy Requirements:** 

 100,000 EVs will require around 1,000 MWh energy per day

Power Requirements:

- With 3.3 kW charging, 100,000 EVs can add up to 330 MW load
- With 6.6 kW charging, 660 MW load

Grid Issues with charging EVs:

- If charging occurs on peak, supply shortages and extreme energy prices can be experienced
- If charging occurs off peak, these problems may be alleviated

### Distribution System Issues with EV Charging

EVs are more likely to clump in certain neighborhoods which will lead to much higher penetration on the distribution system then on the grid in general

 Loads can grow unexpectedly when EV owners visit each other

Charging on peak can cause:

- Line and transformer overloads
- Increased line losses
- Voltage sags

Charging off peak can still reduce distribution transformer life from eliminating cool down periods



### <section-header> Smart Charging Control Many of the issues with EV charging can be addressed through controlled charging Controlled charging allows EV loads to be reduced when needed and can facilitate peak shaving Charging control can also facilitate vehicle-to-grid applications such as: Regulation Agad following Spinning reserves Charge control can be either: Incremental adjustment of the charge rate Discrete switching of EVS

### Incremental Charge Control EV charge rate can be set to any level between zero and the charger maximum Can be accomplished in a variety of ways: - Special hardware installed in the EV: Utility or an aggregator sends a signal directly to the EVs internal charger to set the power draw level - Pilot signal adjustment on SAE 1772 chargers: Utility or aggregator sends a signal to the charging station which tells the EV how much power it can draw Allows: - Utilities to reduce charging of EVs for peak shaving as needed - EVs to perform V2G regulation, load following, and **ALSTOM** reserves GRID

### V2G Through Incremental Charge Rate Adjustment

Involves adjusting the charge rate around a fixed scheduled rate called the Preferred Operating Point (POP)

Can perform regulation up and

the POP



Can perform regulation down and reserves by increasing above the POP

> GRID













### V2G Optimization Constraints

### Charger limits

Set either by the maximum charge rate of the internal charger or the maximum rate of the charging station

Battery capacity limits

- Cannot charge beyond a 90% SOC limit for battery life
   Often set by OEMs

### EV availability constraints

- Forecasted transport profiles with associated probabilities
   Uses the expected values of available EVs
   EVs can leave unexpectedly and must be compensated
- Ancillary service constraints
  - Regulation up and responsive reserve capacity cannot be greater than the POP
  - POP and all capacities must be greater than zero
- System Constraints
  - System load constraint: Maximum POP inversely proportional to the system forecasted load (OptLoad Algorithm) Real time price constraint: Maximum POP inversely proportional to the system forecasted price (OptPrice Algorithm)

GRID 

















| Communication Signals |                                       |                                  |                      |  |  |
|-----------------------|---------------------------------------|----------------------------------|----------------------|--|--|
|                       |                                       |                                  |                      |  |  |
|                       | Dispatch<br>Algorithm                 | Avg. Signals Per<br>Car Per Hour |                      |  |  |
|                       | Incremental<br>Dispatch               | 188                              |                      |  |  |
|                       | Single Dispatch<br>List Recalculation | 52                               |                      |  |  |
|                       | Fifth Dispatch List<br>Recalculation  | 12                               |                      |  |  |
|                       |                                       |                                  |                      |  |  |
|                       |                                       | GRID                             | _ST <mark>©</mark> M |  |  |









| ase Study                             | Resu                        | Ilts: Line                       | Current                          | s and (                         | Overloa                       |
|---------------------------------------|-----------------------------|----------------------------------|----------------------------------|---------------------------------|-------------------------------|
|                                       | Махімим                     | LINE CURREN                      |                                  | RITHM (A)                       |                               |
| Feeder                                | Base C                      | ptFeeder O                       | otComb Op                        | tLoad Opt                       | Price                         |
| T1                                    | 69.2                        | 75.9                             | 91.1                             | 88.1                            | 95.3                          |
| Т2                                    | 141.9                       | 154.0                            | 199.8                            | 187.3                           | 199.8                         |
| Т3                                    | 104.6                       | 109.8                            | 145.4                            | 134.0                           | 130 1                         |
| NUMBER                                |                             |                                  |                                  |                                 | PERIOD                        |
| NUMBER<br>Feeder                      | R OF LINE                   | Overloads<br>OptFeeder           | DURING THE                       | SIMULATION                      | PERIOD<br>OptPrice            |
| NUMBER<br>Feeder<br>Total             | R OF LINE<br>Base<br>0      | Overloads<br>OptFeeder<br>0      | DURING THE<br>OptComb<br>35      | SIMULATION OptLoad 3            | PERIOD<br>OptPrice<br>22      |
| NUMBER<br>Feeder<br>Total<br>T1<br>T2 | R OF LINE<br>Base<br>0<br>0 | Overloads<br>OptFeeder<br>0<br>0 | DURING THE<br>OptComb<br>35<br>0 | SIMULATION<br>OptLoad<br>3<br>0 | PERIOD<br>OptPrice<br>22<br>0 |

|          |           |                    |                                 | SIOM |
|----------|-----------|--------------------|---------------------------------|------|
|          |           |                    |                                 |      |
|          |           |                    |                                 |      |
| Economio | Deculto   |                    |                                 |      |
| Economic | Results   |                    |                                 |      |
|          |           |                    |                                 |      |
|          | \$200,000 |                    |                                 |      |
|          | \$190,000 |                    |                                 |      |
|          | \$180,000 |                    |                                 |      |
| ofits    | \$170,000 |                    |                                 |      |
| ā        | \$160,000 |                    |                                 |      |
|          | \$150,000 |                    |                                 |      |
|          | \$140,000 | Onti oad OntPrice  | OntFeeder                       |      |
|          | optosito  | Charging Algorithm | opu coour                       |      |
|          |           |                    |                                 |      |
|          | \$0.025   |                    |                                 |      |
| (wh)     | \$0.020   |                    |                                 |      |
| e (\$/   | \$0.015   |                    |                                 |      |
| Pric     | \$0.010   |                    |                                 |      |
| lergy    | \$0.005   | ┥┝──┥┝             |                                 |      |
| <u>ل</u> | \$0.000   |                    |                                 |      |
|          | OptComb   | OptLoad OptPrice   | Opt⊢eeder                       | CTGM |
|          |           | onarging Agontinin | ─────── <b>─</b> ─── <b>└</b> ┕ | SIOM |

### Case Study Results: Losses

### LINE LOSSES BY ALGORITHM (MWH)

| Feeder | Base  | OptFeeder | OptComb | OptLoad | OptPrice |
|--------|-------|-----------|---------|---------|----------|
| Total  | 2,350 | 2,757     | 2,856   | 2,835   | 2,843    |
| T1     | 257   | 301       | 311     | 309     | 310      |
| T2     | 1,146 | 1,353     | 1,403   | 1,392   | 1,396    |
| Т3     | 947   | 1,104     | 1,142   | 1,134   | 1,137    |

PERCENTAGE IMPROVEMENT OF OPTFEEDER VERSUS OTHER ALGORITHMS

| Feeder | Vs. OptComb | Vs. OptLoad | Vs. OptPrice |
|--------|-------------|-------------|--------------|
| Total  | 3.48%       | 2.75%       | 3.02%        |
| T1     | 3.41%       | 2.66%       | 2.93%        |
| T2     | 3.60%       | 2.83%       | 3.12%        |
| Т3     | 3.35%       | 2.66%       | 2.92%        |

| se Stud        | y Resi    | ults: Volt | ages                  |            |                        |
|----------------|-----------|------------|-----------------------|------------|------------------------|
|                | MINIMUM   | NODE VOLTA | GES BY ALG            | ORITHM (PL | ı)                     |
| Feeder         | r Base    | OptFeeder  | OptComb               | OptLoad    | d OptPrice             |
| T1             | 0.956     | 0.953      | 0.943                 | 3 0.94     | 6 0.94                 |
| T2             | 0.957     | 0.953      | 0.939                 | 0.94       | 3 0.94                 |
| T3             | 0.953     | 0.950      | 0.933                 | 0.93       | 8 0.93                 |
| OCCURF<br>Feed | RENCES OF | ANSI C84.1 | RANGE A IN<br>OptComb | OptLoad    | Y ALGORITH<br>OptPrice |
| T1             | C         | 0          | 263                   | . 51       | 186                    |
| T2             | C         | 0          | 308                   | 43         | 220                    |
| Т3             | C         | 0          | 2751                  | 1083       | 2077                   |
|                |           |            |                       |            |                        |
|                |           |            |                       |            |                        |

# Case Study Conclusions Final Conclusions Feeder load factor constraint: Eliminates overloads Eliminates voltage sags Reduces losses Controlled charging can be implemented in many different ways Smart charging of EVs can shift peaks and extend equipment life V2G can be implemented with minimal infrastructure while providing significant benefits to customers and utilities even when the distribution system is constrained

| Thank you. |  |
|------------|--|
| Questions? |  |
|            |  |
|            |  |
|            |  |
|            |  |