Energy Storage: How much do we need? And how much can we afford?

Michael Kintner-Meyer

Pacific Northwest National Laboratory

IEEE-Northwest Energy Systems Symposium (NWESS) Seattle, WA

March 22, 2012

Contact

email: Michael.Kintner-Meyer@pnnl.gov

phone: 509.375.4306

National Relevance of Storage to Provide a **Resilient, Low-Carbon Electricity Supply**

What questions does the DOE Storage Program address?

- What role could stationary energy storage play in near- and long-term in meeting the Nation's energy objectives?
- To what extent does the value of storage and the need for storage capacity depend on: market designs, regulatory frameworks (such as definition of balancing authorities), and the deployment of variable renewable energy resources?
- What are the optimal technical characteristics for storage technologies in different applications?
- What are the regional differences in the need for energy storage?
- What are the cost performance characteristics for energy storage to be cost competitive at scale?
- What are the challenges to integrate energy storage into grid operations and transmission planning processes?
- What are the best practices, lessons-learned, and success storage of existing energy. storage deployments and how can they be applied to guide the future R&D agenda for energy storage?

Analysis Fundamental to the DOE Energy Storage Program

Timeline of the DOE Analysis Agenda

PNNL National Assessment of Energy Storage Systems for 2020

- Market size potential by cost target and sub-region:
 - For balancing service (Intra-hour)
 - MW power rating
 - MWh energy capacity
 - ranking of Life-Cycle-Cost by technology
 - For arbitrage
 - MW power rating
 - MWh energy capacity that are economically viable

2020 Grid Definition

- Nationwide 20% RPS
- Individual state RPS are honored

Sensitivities

- Wind forecasting error
- Low/high natural gas expectations

Value of National Assessment

- Provides plausible market potential estimates of energy storage for the investment community and policy makers in a 9-year forecasting time horizon (2020)
- Indicates relative competitiveness among main categories of storage technologies as well as competitiveness versus Demand Response and traditional generation and transmission
 - Allows to estimate/set cost/performance target for specific markets and specific regions

Differentiates the markets for

- Short-term storage (< 1h) and</p>
- Longer-term storage (>6 hours)
- Reveals key assumptions and their influence on the outcome of the analysis

Balancing Analysis

and

Storage Opportunities < 1 hour

Balancing Services Definition

Scenario Definition:

Balancing Services:

- Scope: WECC, 2020
 - Assume 24.0 GW of total installed capacity of wind.
 - Existing wind capacity 9.6 GW
 - Added capacity 14.4GW
- Technology choices
 - Combustion turbine
 - NAS batteries
 - Li-Ion batteries
 - Redox-Flow
 - CAES
 - Flywheels
 - Demand response (EV)
 - Pumped hydro

Assessment for WECC for a 2020 Grid Scenario

Intra-hour Balancing Requirements for WECC for a 2020 Grid Scenario

Hormosillo

Intra-hour Balancing Requirements for WECC for a 2020 Grid Scenario

Hermosillo

Capacity and Energy Requirements of all Technologies to meet Total Intra-hour Balancing in 2020

North West Power Pool

Case	Technology	GW	GWh	
C1	Combustion turbine	1.99	-	
C2	NaS	2.02	0.60	
C3	Li-ion	2.02	0.59	
C4	Flywheel	2.00	0.56	
C5	CAES 2 modes	3.71	22.09	
	7 min waiting period, NaS	1.24	0.11	
C6	Flow battery	2.03	0.62	
C7	PH multiple modes	2.01	0.58	
	4 min waiting period, NaS	0.87	0.14	
C8	PH 2 modes	3.71	22.21	
	4 min waiting period, NaS	0.89	0.05	
C9	DR	7.19	-	

Cost Performance Characteristics (2020)

Parameter	NaS Battery	Li-ion Battery	Pumped Hydro	Combustion Turbine	Combined Cycle	Demand Response	CAES	Flywheel	Redox Flow Battery
Battery Capital Cost – Energy Capacity \$/kWh	290 (181-331)	510 (290-700)	10				3	115 (81- 148)	131 (88- 173)
System Capital Cost – Power Demand \$/kW			1,890 (1,640- 2,440)	990	Not Used	620	850 (500- 1,140)	610 (200- 820)	775 (608- 942)
PCS (\$/kW)	150	150							150
BOP (\$/kW)	50	50						50	50
O&M fixed \$/kW- year	3	3	4.6	10.24	14.93		7	18	5
O&M fixed \$/kW- year (PCS)	2	2							2
O&M variable cents/kWh	0.7	0.7	0.4	0.9	0.4		0.3	0.1	0.1
Round trip efficiency	0.78	0.80	0.81	0.315			0.50	0.85	0.75

Redox flow – assume peak power/rated power = 1.4 Stack cost 2020 - \$352-639/kW (average = 496/kW)

Life-Cycle Cost Results

Key outcomes

- Results are capital cost driven
- Na-S, Flywheels, and DR, PH at current cost are cost competitive (LCC) today
- Li-ion, Redox-Flow will be cost-competitive with CT
- Consistent with current activities in the storage market. Primarily 15-20 minute products

Hybridization Opportunities

Motivation: identifying cost optimal hybrid system where we pair the complementary technologies (slow and fast responding devices)

Results

- Unless there are physical constraints (e.g., ramp limits), the optimal solution is determine solely by capital cost
- Our minute by minute simulation did NOT find limiting ramp rates of any investigated technologies
- Unless you looking at power-quality or sharp transients, hybridization may be only driven by cost.
- Different tools, such as PLSF must be used to analyze advantages of hybrid systems

Opportunity for Storage > 1 hour Duration

Cost Targets for Storage >1 Hour Duration

Net revenue (energy+capacity) > cost recovery

Annual net revenue = $f(\eta, p_p, p_o, No \ of \ days)$

Annual Cost recovery = f (C_{PCS} , C_{Sto} , α , d)

Assumptions

- $C_{PCS} =$ \$150/kWh
- *D* = 260 days
- *d*= 8 hour
- $\alpha = 0.12$
- $p_o = $40/MWh$

Key Outcomes

- <u>Energy</u> low value, thus cost targets must be unrealistically low (>\$100/kWh)
- currently incr. capital cost \$300-\$1000/kWh
- <u>Capacity</u> value must be utilized for 4-8 h storage to be economically viable

Pacific Northwest NATIONAL LABORATORY

Cost Targets to Justify Storage for Energy Arbitrage?

Incremental cost of storage [\$/kWh]

Cost target based on • Energy value only

Detailed Production Cost Modeling Estimates the Revenue Opportunities

WECC Energy Storage

/10/2020 12:50 am

COPYRIGHT©2011

Placement of storage at strategic locations to mitigate congestion

© 2011 Europa Technologies © 2011 INEGI © 2011 Google Data SIO, NOAA, U.S. Navy, NGA, GEECO 41*40'48.83" N 100°55'02,40" W elev 3228 (t

Revenue Expectations from Energy Arbitrage

Key Outcomes

- Wholesale <u>energy value</u> is low and is insufficient to solely justify storage >1 hour
- <u>Capacity value</u> necessary for business case of storage >> 1hour

Market Potential for Storage in NWPP

Market Potential for Storage in NWPP

