Perspectives on Energy Storage

Northwest Energy Systems Symposium April 30, 2014 Patrick Leslie, Emerging Technologies Program Mgr.

Why energy storage?

1. Solves multiple problems:

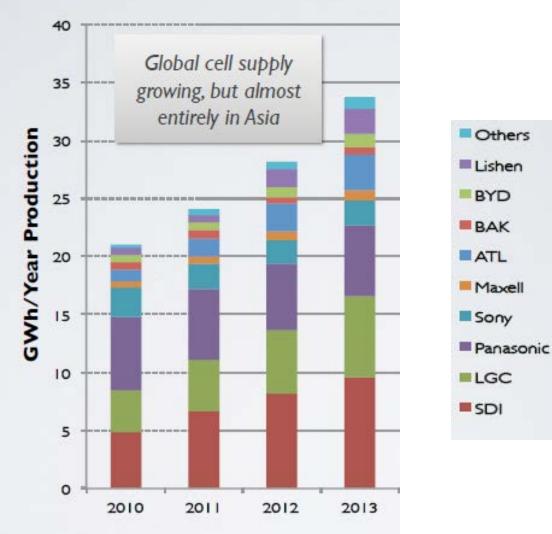
- T&D peak shaving / upgrade deferral
- System peaking capacity
- Ancillary services (system flexibility)
- Outage mitigation
- 2. Modular & Scalable

3. Ease of permitting

- No emissions, silent
- No water or wastewater needs

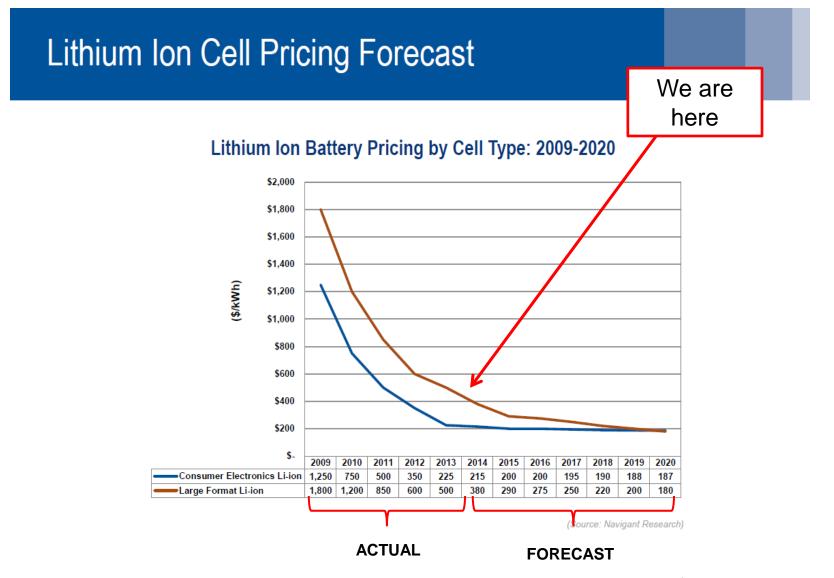
4. Re-locatable

What are the apps worth?



Category	Landline Phone	Smartphone
Phone Price	\$20 - \$80	\$100 - \$300
Annual Fees	\$250 - \$500	\$800 - \$1,500

Conclusion: Smartphones not economic choice



Lithium-ion manufacturing ramping up

Prices are dropping

9

Storage projects are proliferating

[partial list]

Utility	Project	Capacity (MW)	Location	Technology	Project Start
PGE	Salem	5.0	Oregon	Li-ion	2013
Energy Northwest	Nine Canyon	0.1	Washington	Li-ion	2013
SnoPUD	MESA	1.0	Washington	Li-ion	2013
BC Hydro	Golden	1.0	British Columbia	Sodium sulfur	2011
PG&E	Various	6.0	California	Sodium sulfur	2013
SCE	Tehachapi	8.0	California	Li-ion	2012
SDG&E	San Diego	1.5	California	Li-ion	2013
SMUD	Sacramento	1.0	California	Zinc bromine	2012
Duke	Notrees	36.0	Texas	Advanced lead acid	2012
AES	Laurel Mountain	30.0	Virginia	Li-ion	2011
Dayton Power & Light	Tait Station	40.0	Ohio	Li-ion	2013

PSE

PUGET SOUND

RGY

The Energy To Do Great Things

Storage projects are scaling-up

AES Laurel Mountain Capacity: +32/-32 MW Energy: 7.5 MWh COD: 2011 Q4 Location: W. Virginia Use: Frequency Regulation

Duke Notrees

Capacity: +36/-36 MW Energy: 24 MWh COD: 2012 Q4 Location: Texas Use: Frequency Regulation

Storage projects are scaling-up

AES Tait Station

Capacity: +20/-20 MW Energy: 10 MWh COD: Sep 2013 Location: Ohio Use: Frequency regulation

Bloomberg

Print Back to story

AES Plans 100-Megawatt Northern Ireland Power-Storage Project

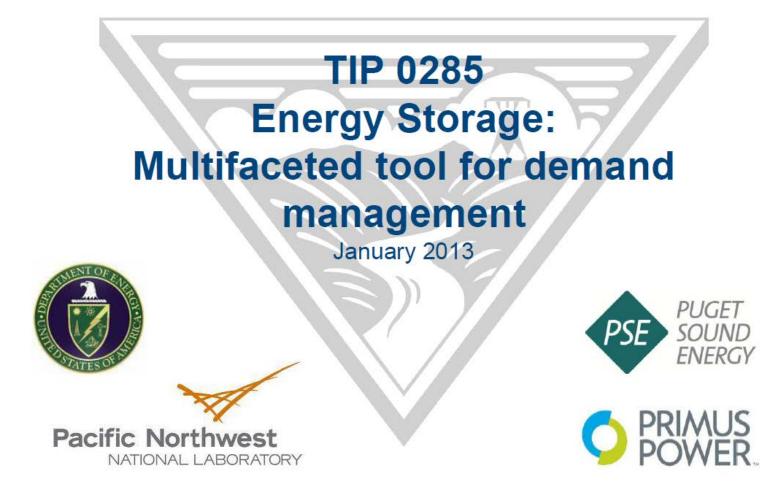
By Alex Morales - Apr 2, 2014

AES Corp. (AES) said it's planning to build 100 megawatts of battery capacity in Northern Ireland to store excess wind power and release it when generation is low.

The battery array would be built at the company's Kilroot power station, northeast of Belfast, AES said in a statement yesterday. The Arlington, Virginia-based company applied to the System Operator of Northern Ireland, the grid operator, to secure a connection to the transmission grid. The project could be running by the second quarter of 2015, it said.

Behind-the-meter storage is emerging

Storage systems shave peaks, reduce demand charges, shave TOU rate blocks, and provide backup power. Installed under lease or PPA terms.



15 MW+ development pipeline PSE PUGET SOUND ENERGY The Energy To Do Great Things

PSE-Primus-PNNL Pilot Project

BONNEVILLE POWER ADMINISTRATION

Technology Innovation

Project Synopsis

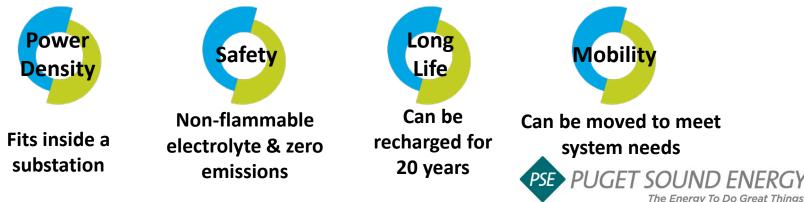
Objective: Assess and demonstrate the benefits of energy storage on the distribution grid. Install and test a 0.5 MW x 1.0 MWh system.

Oct '13 – Sep '14

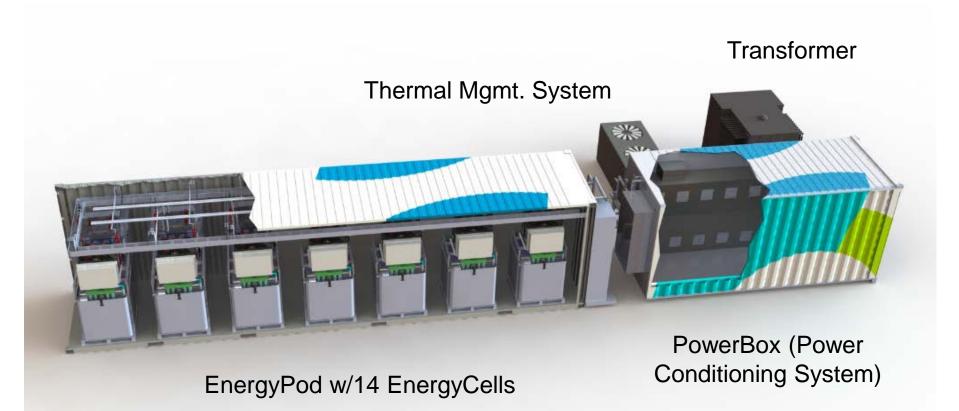
ObjectiveFeasibility & cost-
benefit analysis,
PNNL reportPermit, construct,
connect, commissionTest, monitor, evaluate.PNNL reportInterconnect, commissionPNNL report.

Timeline Feb – Sept 2013

Budget


	Primus	U.S. Dept. of Energy	PSE	BPA	Total Cost
Phase 1	\$ 30,600	\$ 80,000	\$ 11,700	\$122,300	\$ 244,600
Phase 2	\$698,700	\$ 59,800	\$ 1,376,015	\$675,800	\$2,810,315
Phase 3	\$ 51,300	\$114,500	\$ 16,100	\$181,900	\$ 363,800
TOTAL	\$780,600	\$254,300	\$ 1,403,815	\$ 980,000	\$3,418,715

Oct '14 – Dec '15


EnergyPod®: grid-scale, rechargeable batteries

A distributed storage technology that can simultaneously deliver:

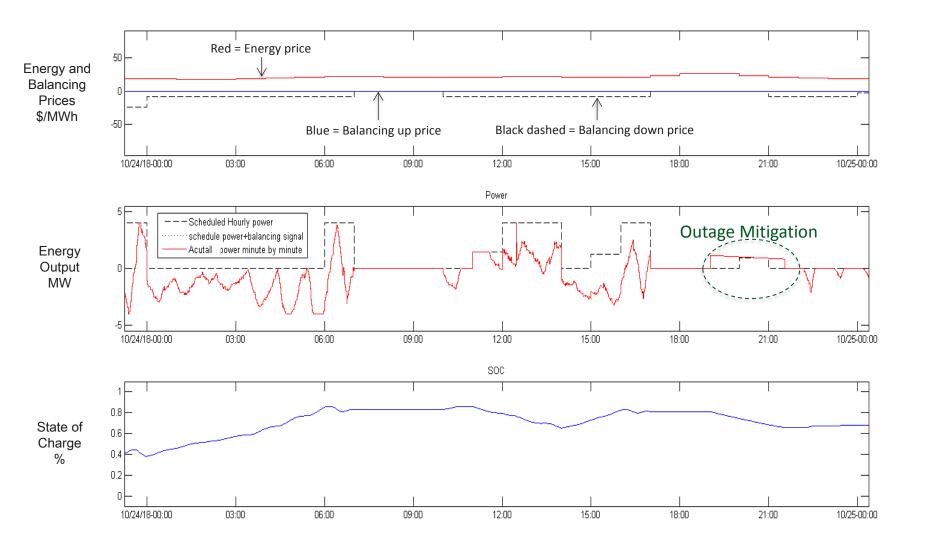
What's inside an EnergyPod[®]?

Example Site Layout for large single EnergyPod + Inverter and ancillaries End to End Length of Pod + PCS is 47.5 ft

Four specific sites evaluated

Location	Issues	Application
Bainbridge	Capacity constraint, reliability	Shave peak load on WIN and/or MUR substations. Island customers during outages.
Baker River #24	Reliability (radial feeder with frequent outages due to vegetation)	Install storage at feeder mid-point to island customers during outages
Chico #12	Reliability, capacity constraint	Multiple systems with sectionalizing switches to island customers during outages.
Crystal Mountain	Reliability	Increase supply at generator during feeder outages.

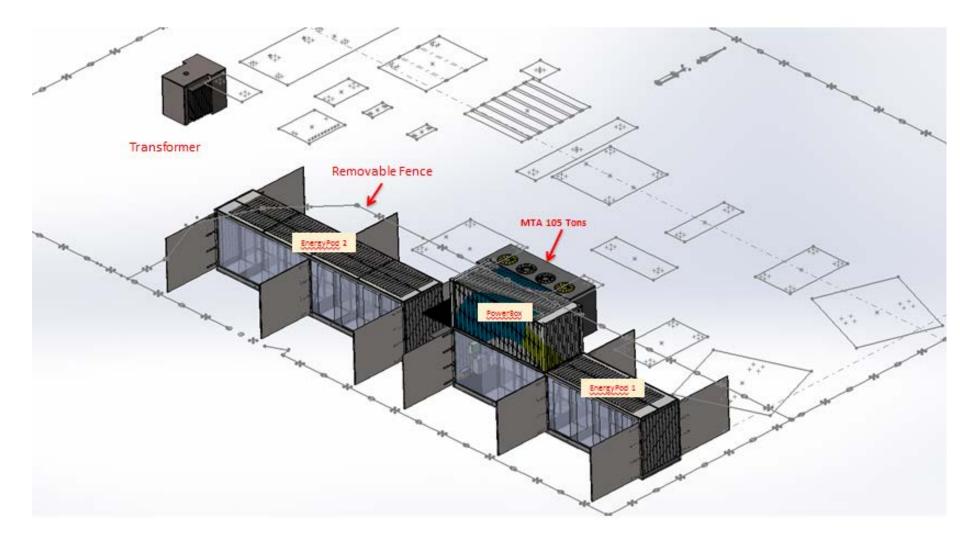
Energy Storage Applications


Proudly Operated by Battelle Since 1965

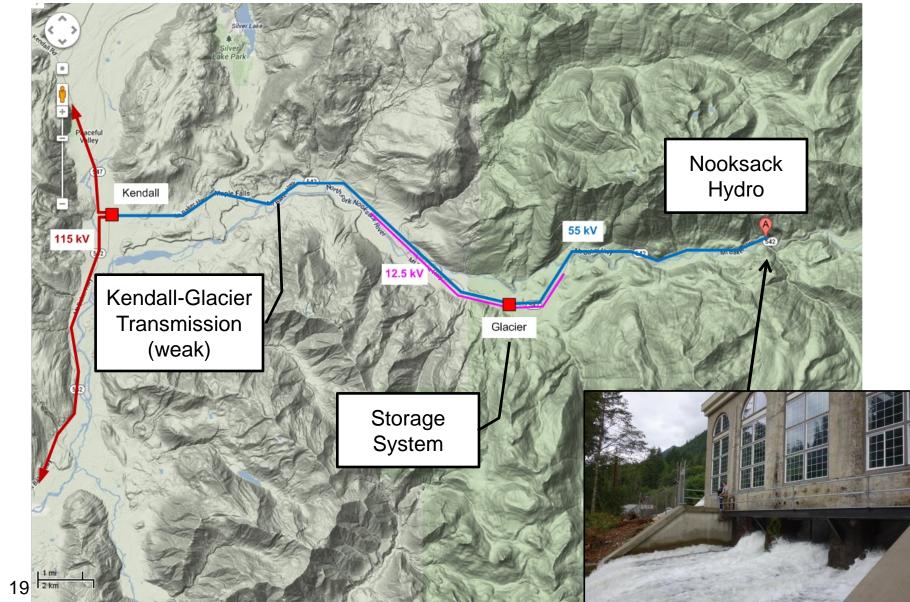
Num.	Application	Value Derived from Energy Storage
1	Capacity	Value based on incremental cost of peaker; alternative method based on avoided incremental cost of firm transmission from Mid-C
2	Distribution Upgrade Deferral	Deferred costs of proposed distribution upgrades
3	Outage Mitigation	Reduced outages to end-use customers assuming no foreknowledge and perfect foreknowledge
4	Balancing Services	AURORA and a PSE internal mixed integer linear programming (MILP) model used to determine the inc. and dec. balancing service price
5	Arbitrage	AURORA model used to determine energy price differentials (peak vs. off-peak) minus efficiency losses
April 29, 20	14	15

24-hour energy storage schedule for Bainbridge Island

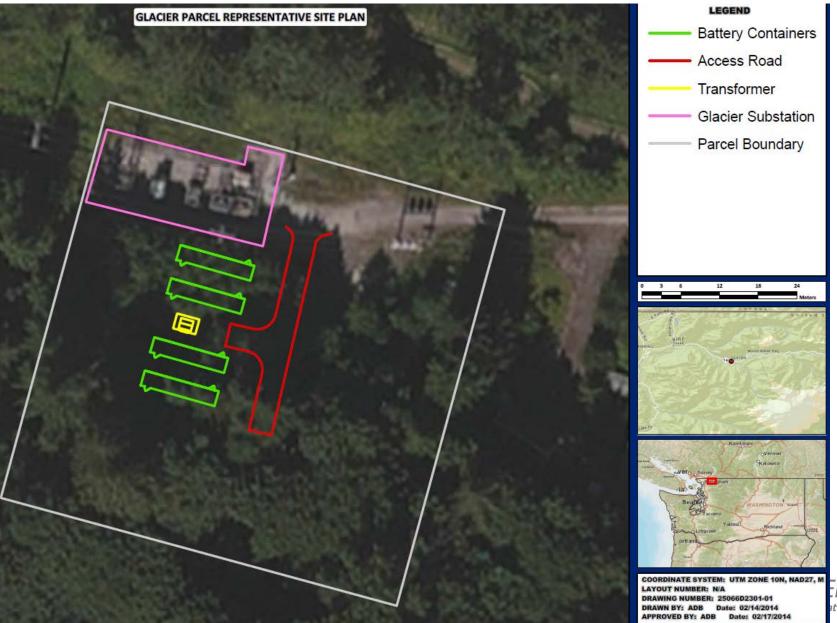
Proudly Operated by Battelle Since 1965



Summary of results (NPV benefits and revenue requirements over 20-year time horizon) – Bainbridge Island


Random Outages \$35,000,000 **Projected Outages** - Peaker-Driven – Peaker-Driven Capacity Value Capacity Value \$30,000,000 **Projected Outages Random Outages** – Mid-C Capacity – Mid-C Capacity \$25,000,000 Value Value \$20,000,000 \$15,000,000 \$10,000,000 \$5,000,000 Ś-\$(5,000,000) Total Revenue Scenario 1 Scenario 2 Scenario 3 Scenario 4 Requirements Revenue Requirements \$20,470,000 Arbitrage and Energy Costs \$(13,384) \$(23,550) \$(13,384) \$(13,384) Balancing Services \$3,104,871 \$3,100,376 \$3,104,871 \$3,104,871 Outage Mitigation \$10,632,260 \$10,864,956 \$10,632,260 \$10,632,260 Distribution Upgrade Deferral \$7,454,000 \$7,454,000 \$7,454,000 \$7,454,000 Capacity Value \$1,570,000 \$1,570,000 \$7,443,000 \$7,443,000

Proposed Layout



Proposed Glacier Microgrid Concept

Potential Glacier Layout

Similar Projects

Santa Rita
Prison microgrid

PSE

PUGET SOUND ENERGY

The Energy To Do Great Things

BC Hydro