

Proudly Operated by Battelle Since 1965

Transactive Control and Coordination of Demand and Distributed Energy Resources

Presented by:

Rob Pratt

IEEE-PES Seattle Chapter – Northwest Energy Systems Symposium April 27-28, 2016

Addressing the Need for *Grid Flexibility* from Distributed Assets: Transactive Grid Systems

The Problem:

- Generation is rapidly shifting from centralized to more distributed forms, and from being entirely dispatchable to significantly intermittent and stochastic.
- Operating such a grid with the reliability and affordability society demands, will require new forms and vastly increased amounts of operational flexibility.

The Opportunity:

➤ To provide this flexibility at reasonable cost, much of it is expected to be derived from *distributed energy resources (DERs)*: responsive loads, electrical & thermal storage, smart inverters, electric vehicle chargers, etc.

The Challenge:

- How can we coordinate DERs to provide grid services when they are neither owned nor controlled by the power grid operator?
- ➤ Transactive grid systems coordinate DERs through transparent, competitive means using real-time transactions involving prices or incentives to provide the feedback to close the "control" loop.

Long-Term Objective: Link <u>All</u> Values/Benefits in Multi-Objective Control

Simultaneously achieve combined benefits:

- Reduce peak loads
- Minimize wholesale prices/production costs
- Reduce transmission congestion costs
- Provide stabilizing services on transmission lines to free up capacity for renewables
- Provide ancillary services, ramping, & balancing
- Manage distribution voltages in light of rapid fluctuations in production from renewables

Feedback from Customer on their Price-Flexibility Provides Closed-Loop Control when Setting Prices

Proudly Operated by Battelle Since 1965

1. Price-Responsive Device Controls Express the Customer's Flexibility

Transactive Thermostat Generates Demand Bid Based on Customer Settings (Cooling Example)

- User's comfort/savings setting implies limits around normal setpoint $(T_{desired})$, temp. elasticity (k)
- Current temperature used to generate bid price at which AC will "run"
- AMI history can be used to estimate bid quantity (AC power)
- Market sorts bids & quantities into demand curve, clears market returns clearing price

Good Transactive System Designs Address Key Barriers to Deploying & Utilizing DERS

provided/received by all

parties (incl. non-participants)

of information transferred:

value & quantity as f(time)

Proudly Operated by Baffelle Since 1965

owners by supporting response

to multiple value streams

Basics of Transactive Grid Control Systems

erated by **Baffelle** Since 1965

- Voluntary coordination of responsive, distributed assets though rates or incentives
- Rates and incentives reflect actual grid values and constraints
- End user offered an equitable portion of the value earned
- Decision-making on if and how to respond is kept at end-user level and automated
- Decentralized decision-making central command-and-control (~10⁹ assets) unworkable, unacceptable re. privacy
- ► Feedback loop provides smooth, stable, predictable response required by grid operators
- Allows end-user assets to compete with each other and traditional grid assets, to provide grid services at the lowest cost

Supporting Infrastructure Requirements

Proudly Operated by Battelle Since 1965

	Residential	Sm./Med. Commercial (Unitary HVAC)	Large Commercial (Built-up HVAC)
End Use Targets	 AC / Heat Water heaters (elec.) Refrigerators/ freezers?* Dryers? 	 AC / Heat (rooftop, unitary) Lighting?* Refrigeration 	 Chillers Pumps Fans* Lighting* Refrigeration* Office equipment?*
Platforms	 Smart thermostats Smartphone On-board appliances Home PC, cable box Smart meter HEM platform? 	 Smart thermostats On-board equipment PC Smart meter Lightweight BEM platform? 	 BMS (SCADA + RTU controllers) Program response into BMS, or Add supervisory-level "controllers" managing setpoints, etc.

- ▶ * Some resources needed all times of day and year not just daytime, not just on-peak
- Where are smarts located? Where is the common interface? -- HEMS and BEMS

NW has Led Journey on Transactive Approaches

Proudly Operated by Baffelle Since 1965

Olympic Peninsula demo, ca. 2006-07

- Established viability of transactive, decisionmaking to coordinate to achieve multiple objectives
 - Peak load, distribution constraints, wholesale prices
 - Residential, commercial, & municipal water pumping I distributed generation

AEP gridSMART demo, ca. 2010-2014

- PUC-approved RTP tariff developed
 - Provides dynamic, real-time incentive to respond
 - Reflects real-time prices in PJM energy market
 - Manages AEP T&D constraints and peak load

Pacific NW Smart Grid demo, ca. 2010-2015

- Key advancements made by PNWSGD
 - Response to wind balancing needs
 - Developed look ahead signals
 - Formalized, scalable architecture def. transactive node, etc.
 - Showed how "old school" approaches (e.g. direct load control) can be integrated with a transactive schema

Load Shifting Results for RTP Customers in the Olympic Peninsula Demo

- Winter peak load shifted by pre-heating
- Resulting new peak load at 3 AM is noncoincident with system peak at 7 AM
- Illustrates key finding that a portfolio of contract types may be optimal – i.e., we don't want to just create a new peak

Olympic Peninsula Demo: Key

Customers can be recruited, retained, and will respond to *dynamic* pricing schemes **if they are offered**:

- Opportunity for significant savings (~10% was suggested)
- A "no-lose" proposition compared to a fixed rate
- Control over how much they choose to respond, with which end uses, and a 24-hour override
 - prevents fatigue: reduced participation if called upon too often
- Technology that automates their desired level of response
- A simple, intuitive, semantic interface to automate their response

Translates to control parameters:

$$K$$
, T_{max} , T_{min} (see Virtual Thermostat)

Olympic Peninsula Demo: Key

Significant demand response was obtained:

- ▶ 15% reduction of peak load
- Up to 50% reduction in total load for several days in a row during shoulder periods
- Response to wholesale prices + transmission congestion + distribution congestion
- Able to cap net demand at an arbitrary level to manage local distribution constraint
- Short-term response capability <u>could provide regulation</u>, <u>other</u> <u>ancillary services</u> adds significant value at very low impact and low cost)
- Same signals integrated commercial & institutional loads, distributed resources (backup generators)

Two-Way, Hierarchical, Transactive Architecture Localizes and Balances Values & Prices

Proudly Operated by Battelle Since 1965

Opportunities in Large Commercial Building Controls

Proudly Operated by Battelle Since 1965

 Efficiency potential from diagnostics potential, chiller/cooling tower optimizations

- Commercial HVAC controls can be organized as a transactive network
- In principle, has similar self-organizing, self-optimizing properties
 - Chillers buy electricity, sell chilled water to AHUs, who sell chilled air to zone thermostats, etc.
- Electricity prices seamlessly penetrate, system readjusts automatically

The Emerging Transactive Energy Ecosystem

Transactive Energy Ecosystem

Coming soon: transportation, manufacturing

Synergies Between Transactive Systems for Grid Integration and Building Energy Services

Significant New Drivers for Transactive Systems Have Emerged

- Flexibility resources at distribution level are needed
 - Significant value from distribution capacity
 - More importantly, to manage impacts of PV
- Bypassing distribution, DERs straight to wholesale
 - Misses distribution value
 - More importantly, problematic architecturally
 - no observability by distribution
 - no ability to manage conflicting objectives
- Rise of distribution system operators (DSOs)
 - Important new trend (6+ states lead by NY, CA, HI)
 - Broad access to distribution networks DERs, PV, micro
 - Market exchange is a core concept
 - DSO as aggregator is a core concept
 - Reinforces foundational elements of transactive approach

Wholesale RTO/ISO

??? Distribution

DERs

Transactive Systems Program

GOAL: Develop means for engaging and coordinating large populations of customer-owned & 3rd-party distributed assets* through transparent, competitive means, to provide the flexibility required by an adaptive, reliable, and cost-effective future electric system.

To support this goal, the program will:

Develop an environment for developing, testing, refining, and comparing designs for transactive coordination systems, including:

- Analysis framework & performance metrics for developing and comparing transactive designs
- Systematic expression of value & costs from various stakeholders' perspectives
- Scenarios, models & simulation environment to support the analysis

^{*} Distributed assets – DERs – include responsive loads, distributed electrical & thermal storage, smart inverters for solar photovoltaic systems, other distributed generation, electric vehicles, etc.

WA-CEF and DOE - OE & EERE Sponsored Transactive Multi-Campus Project

- Transactive campus/bldg. responsive applications
- Transactive / advanced bldg. controls testbed (SEB bldg.)
- Energy efficiency applications, leveraging transactive network
- Smart PV inverter integration w/ distribution
- ► Transactive grid controls

- Microgrids as a resilience resource/smart city w/ Avista
- ▶ Solar PV & CEF battery in WSU microgrid operations
- Flexible loads, thermal storage