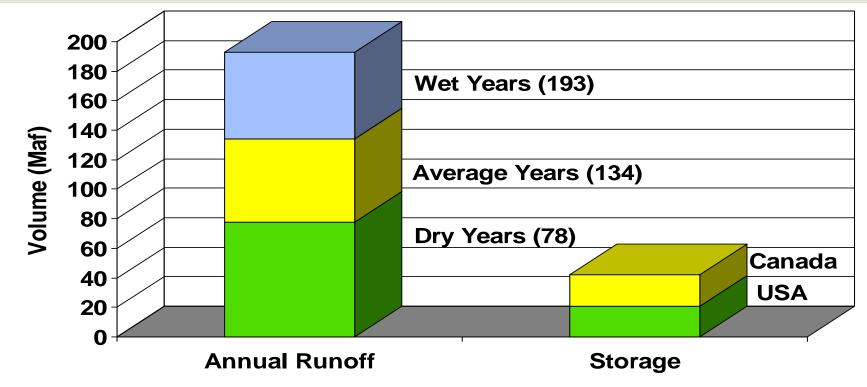
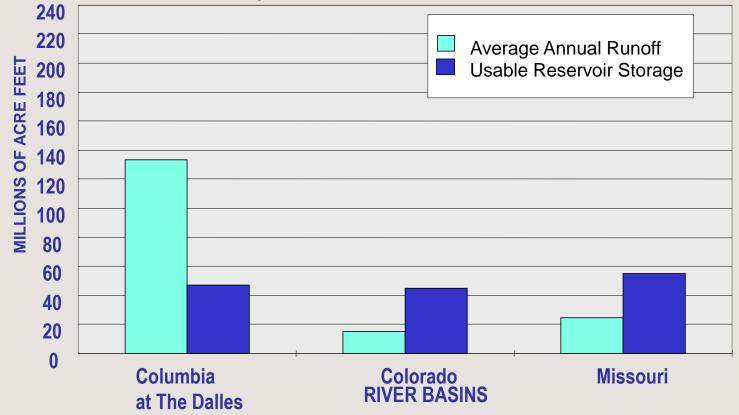
Columbia River Operations

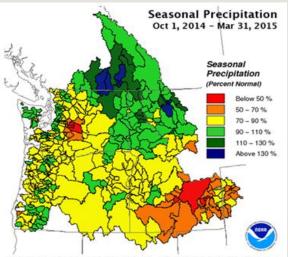

PRESENTED BY Kieran Connolly Vice President Generation Asset Management Bonneville Power Administration

Columbia River Basin

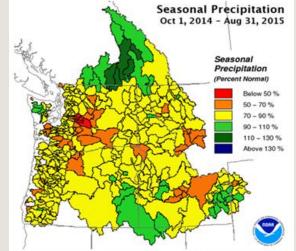

- 4th longest river in North America; drains 258,000 square miles
- 15% of the basin resides in Canada, but provides 38% of annual runoff
- 31 large dams and over 60 smaller ones provide over 30 million acre feet of storage space
- Reservoir system storage is a fraction of annual average runoff
- The operation of the US reservoirs is highly constrained primarily due to salmon recovery efforts

Comparison of Storage Volume to Variations in Runoff

Average Annual Runoff and Usable Reservoir Storage Major Western River Basins



_															
	L I B Y		OUTFLOW OR	FRM	OPER	OPERATE TO VARQ FRM					FRM DRAFT				
						OPERATE TO STURGEON OPERATE T FLOW OBJECTIVES FLOW OBJE									
		OPERATE TO BULL TROUT FLOW OBJECTIVES													
T	H H U O N R G S R E			1	OPER/	OPERATE TO VARQ FRM									
		VARIABLE	ARIABLE DRAFT LIMITS			OPERATE TO MCNARY OPERATE TO MCNARY SPRING FLOW OBJECTIVES SUMMER FLOW OBJECTIVES									
	Ŷ	MINIMUM	MINIMUM OUTFLOW FOR COLUMBIA FALLS (BULL TROUT)												
	AF LA BL EL NS I	WINTER F	I RM ELEVATIO	V		REFILL FULL FOR SUMMER			REATION	DRAFT T ELEVATI	O WINTER FI		ER FRM ATION		
t	G C R O A U D E E		FRM DRAFT AND REFILL												
L		OPERATE T		NITA BAR	0.055				OPERATE TO		KOKANEE OPERATION				
		VARIABLE DRAFT LIMITS (Fish VECC)			PRIE	PRIEST RAPIDS					OPERATE TO VERNITA BAR & CHUM FLOW OBJECTIVES				
	D W	FRM			DRAFT AND	REFILL									
	O R S H A K		LOW OR FRN			OPERATE TO LOWER GRANITE GRANITE SUMMER SPRING FLOW &					MINIMUM FLOW OR FRM				
					SPRING										
		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC		
			Fish ope	ration or driv	ver	F	RM operat	tion or driver		Other	Purposes				

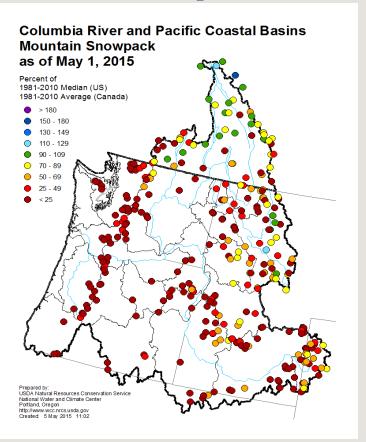

2015 Overview

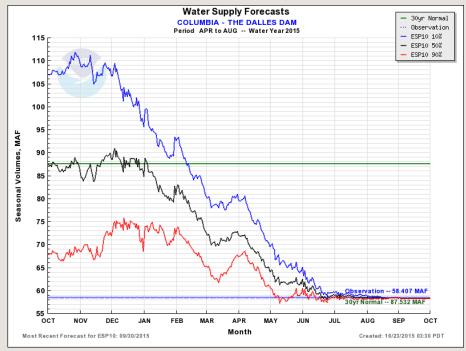
- Warm Winter led to earlier runoff and impacted Spring/Summer water supplies
- Dry Hot Spring / Summer resulted in water quality challenges
- Storage releases propped up river flows and minimized impacts
- Early runoff resembled some of the climate change scenarios analyzed by BPA, Corps of Engineers and Reclamation

Temperature and Precipitation

Creation Time: Wednesday, Apr 1, 2015 Northwest River Forecast Center

Regional Ter	nperature De	partures (°F)
--------------	--------------	---------------

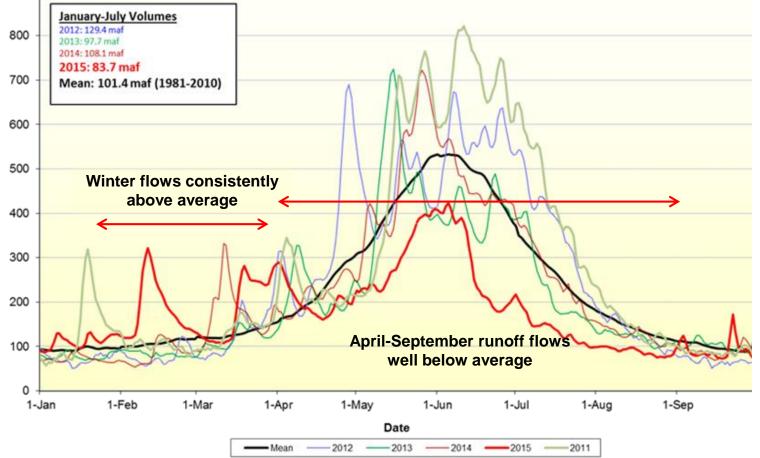


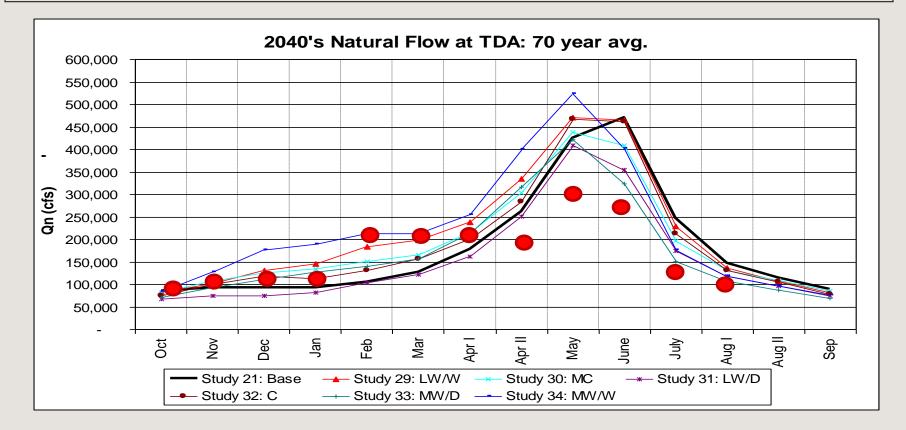

Northwest River Forecast Center

Regional Temperature Departures ("F)													
Temp Dep. °F	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Avg °F	Avg °C
Arrow	4.3	-1.1	4.7	5.6	7.6	6.0	0.5	2.3	7.4	2.4	0.0	3.9	2.0
Grand Coulee	4.4	-2.2	3.2	5.5	6.2	4.6	0.2	2.7	6.4	2.4	1.5	3.2	1.8
Ice Harbor	4.4	-2.2	3.2	5.5	6.2	4.6	0.2	2.7	6.4	0.2	1.6	3.0	1.7
The Dalles	4.6	-1.4	4.0	5.9	7.0	5.6	0.4	2.9	7.4	1.9	1.9	3.7	2.0
Willamette	3.9	-0.1	2.8	5.1	5.0	4.6	-0.3	2.2	5.4	3.3	1.7	3.1	1.7

Months with departures of 4.5°F or greater are highlighted in red

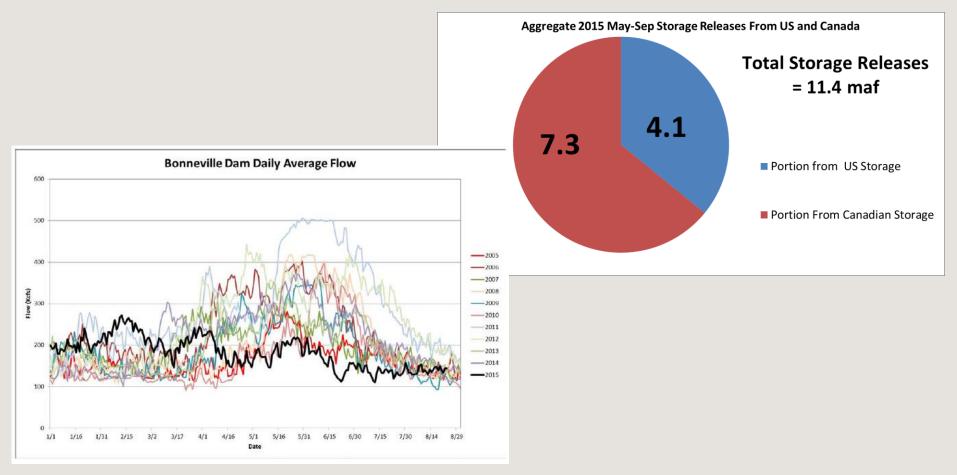
Snowpack and Runoff Forecasts



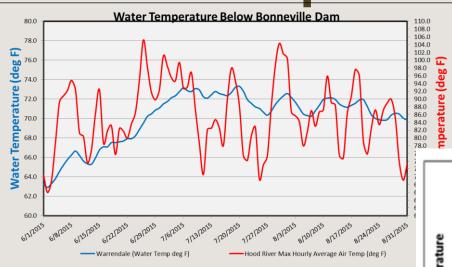

Apr – Aug Observed = 58.4 maf (67%)

Jan - Jul Observed = 83.7 maf (83%)

Natural Flows at The Dalles – 2015

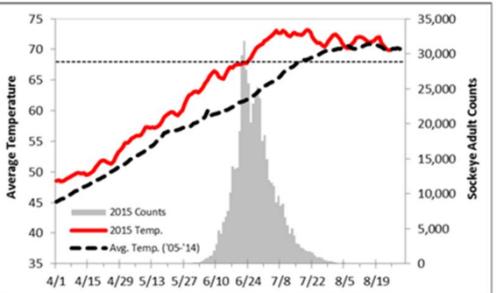


RMJOC-I Natural Streamflows at The Dalles for 2040's vs. 2015 Observed

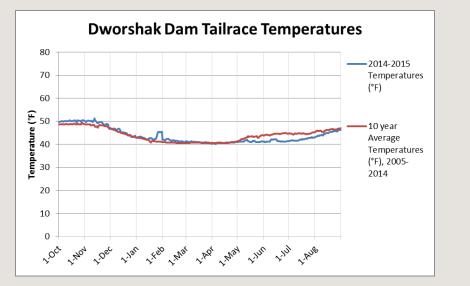


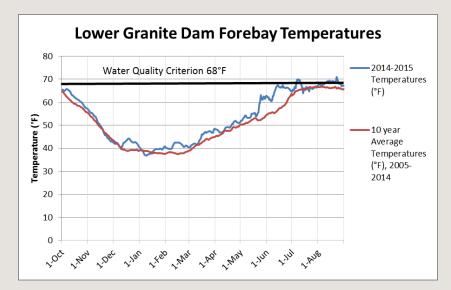
2015 month average flows

Regulated Flows and Augmentation



Water Temperature


The high water temperatures were coincident with the peak of the sockeye salmon adult migration. June 26-July 5 heat wave resulted in water temperatures well above Average


Bonneville Dam Forebay Temperature (F)

Water Temperatures Augmented by Storage Releases

- Temperature Control Devices at headwater projects make a significant difference in the immediate downstream river reaches
- Dworshak Dam releases can be a high percentage of the total Snake River flow during low streamflow periods
- Temperature augmentation from Dworshak Dam maintained water temperature to Lower Granite Dam at or just above the 68 degree F threshold

Impact of Conditions

- Winter Normal precipitation and warm temperatures produced high flow and surplus energy
- Spring/Summer
 - Low precipitation and warm temperatures. Advanced planning mitigated for below average electric generation.
 - Air temperature affected water temperature regionally, temperature control at headwater dams improved conditions immediately downstream.
 - High water temperatures impacted salmon and sturgeon survival.

Adaptability to Climate Change

- Limited storage to augment flows in a dry year, however flow augmentation to mitigate dry conditions benefits both power supply and fisheries needs.
- Headwater projects can mitigate water temperatures in local areas downstream
- While climate change modeling does not suggest the overall poor water of 2015 will be typical, it did provide a good test case for the earlier runoff that modeling does suggest.
- Eighty years of managing water supply volatility for power planning, flood control and salmon protection have given us a solid framework to work within.