
DER-CAM DECISION SUPPORT TOOL FOR DER-CAM DECENTRALIZED ENERGY SYSTEMS ANALYTICS | PLANNING | OPERATIONS

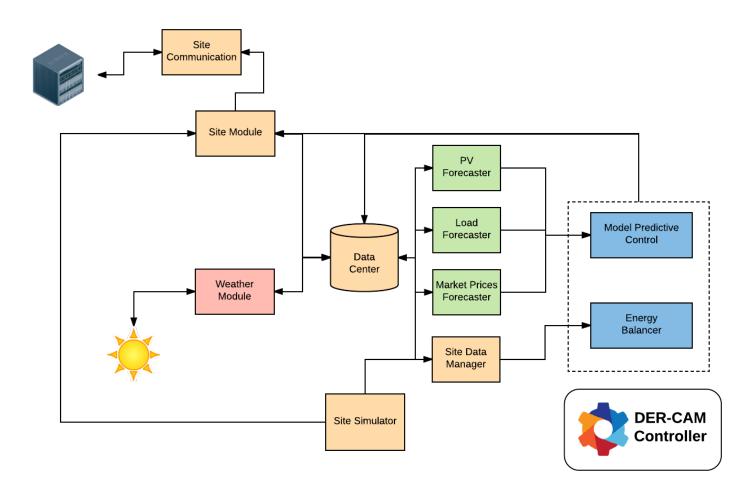
DER-CAM Microgrid Controller

IEEE Northwest Energy Systems Symposium Seattle, WA April 4-5, 2018

DER-CAM Microgrid Controller

BERKELEY LAB

A Supervisory Controller

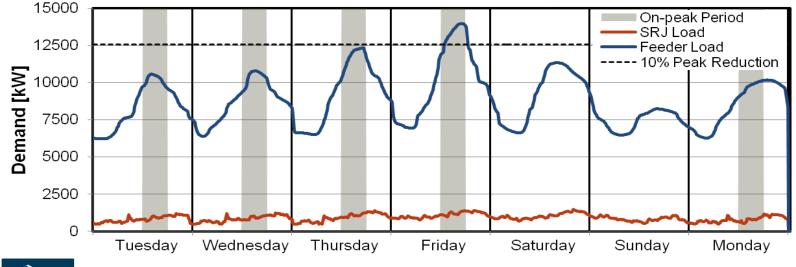

Supervisory Controller

- Determines in advance the optimal setpoint strategy to be implemented by the network control layer.
- Performs an economic optimization considering technical and user constraints
- Acts as an interface between SCADA systems and utility grid/markets platforms.

,		
system	Layer 4 Software Hardware	Distribution Management System Interface Grid Interaction
— — — — — — — — — — — — — — — — Multi-Layered Control System	Layer 3 Software Hardware	Supervisory Level Controls DER-CAM DECISION SUPPORT TOOL FOR DECENTRALIZED ENERGY SYSTEMS ANALYTICS PLANNING OPERATIONS Supervisory Controller / Energy Manager
	Layer 2 Software Hardware	Network Level ControlsSensorsPLCs RTUsNetwork ControlsHigh Speed Load SheddingBuilding Management System
- Mul	Layer 1 Software Hardware	Device Level Controls Inverters Static Switch Load Controller Rotary DG Control Breakers, Contactors, and Switches Protection Devices
`- ·		
	Hardware	Generation, Storage, and LoadMain GridRotating MachinesBattery Storage Super-CapacitorRotary DGPV, Wind, and Micro TurbineCritical LoadNon-Critical Load

Architecture

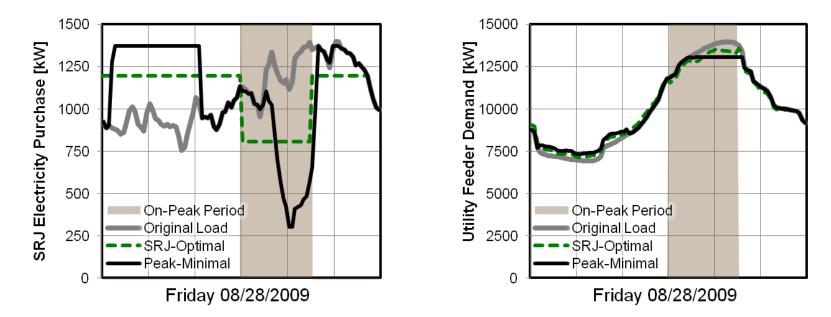
SRJ Microgrid Application


Santa Rita Jail – Operations DER-CAM Test Case

<u>Overview</u>

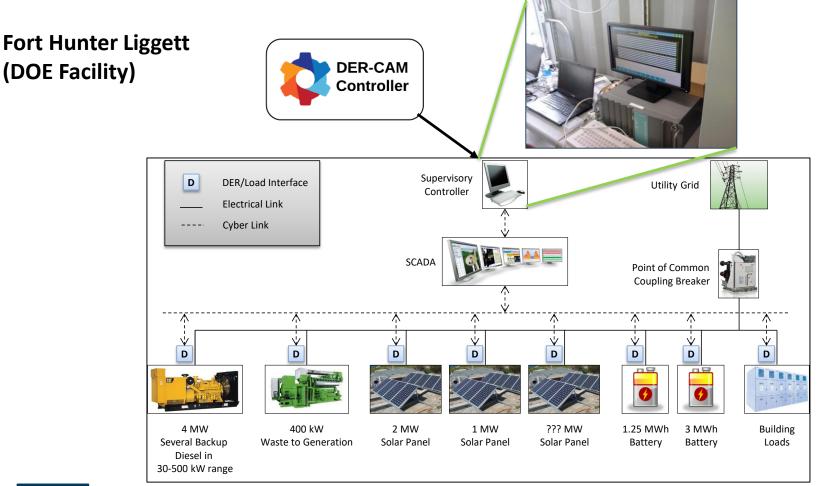
- 4,500 inmate facility; 3MW Peak load
- existing DER: 1.2 MW PV + 4 MWh / 2MW battery

<u>*Objective*</u>: evaluate potential contribution for feeder peak reduction



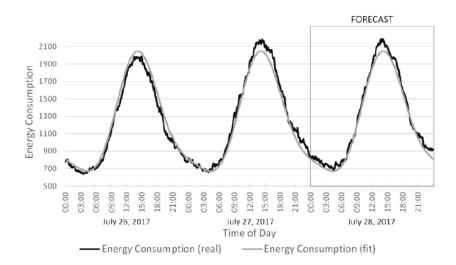
SRJ Microgrid Application

Santa Rita Jail – Operations DER-CAM Test Case


E

	SRJ-optimal	Peak-minimal
Energy Cost	\$54,662	\$54,721
Power Cost	\$20,928	\$25,990
Peak Reduction	2.7%	6.5%

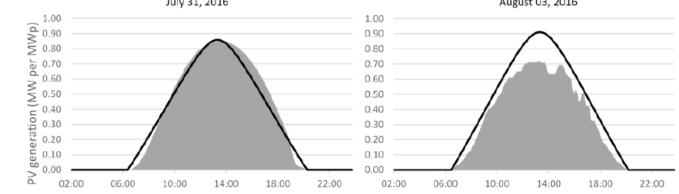
FHL Microgrid Application



FHL Load Forecast

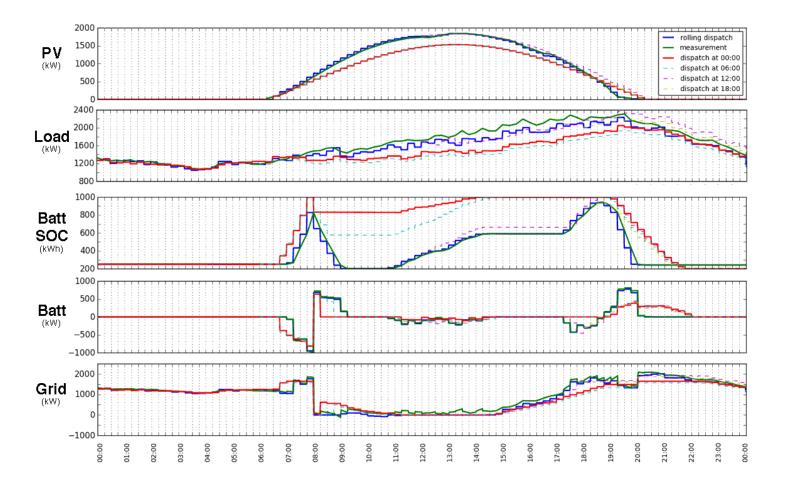
Day ahead Load Forecast (every 15 min)

- Based on the past 4 days of the same type (week, weekend/holiday).
- A Fast Fourier transform is applied to remove the high frequency noise of the historical load profile.


Day	Root Mean Square Error	Median Absolute Dev.	Median Relative Dev.
Jul 28, 2016	63.33	51.95	3.96 %
Jul 29, 2016	44.35	31.61	3.27 %
Jul 30, 2016	154.64	56.74	9.18 %
Jul 31, 2016	69.32	49.10	5.32 %
Aug 1, 2016	143.01	104.97	10.03 %
Aug 2, 2016	51.54	29.98	3.36 %
Aug 3, 2016	117.15	78.64	6.99 %
Week	103.45	48.42	6.18 %

FHL PV Forecast

Day ahead PV Forecast (every 15 min)


- Based on the clear sky characteristic of the photovoltaic generation.
- The clear sky is corrected by a coefficient associated with the weather forecast for each hour. July 31, 2016 August 03, 2016

Day	Root Mean Square Error	Median Absolute Dev.	Median Relative Dev.	
Jul 28, 2016	105.66	91.68	16.22 %	
Jul 29, 2016	73.85	54.33	10.20 %	
Jul 30, 2016	64.37	37.07	8.31 %	
Jul 31, 2016	70.90	59.95	8.93 %	
Aug 1, 2016	68.37	38.34	5.44 %	
Aug 2, 2016	79.27	47.65	6.60 %	
Aug 3, 2016	137.83	131.92	27.73 %	
Week	88.02	64.70	11.60 %	

FHL One Day Operation

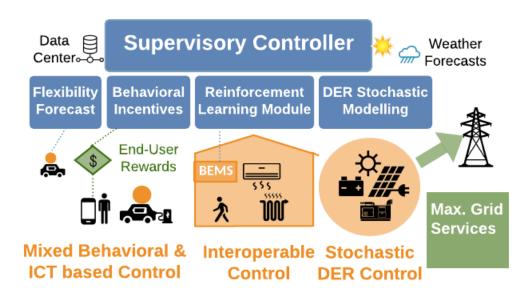
https://building-microgrid.lbl.gov/

FHL Economic Analysis

Day ahead PV Forecast (every 15 min)

- 30% reduction of total operation cost
- Main reduction is associated with peak demand charges
- Still a significant potential for improving forecasts and control approach.

Tariff				
peak	off-peak	coincident peak	non-coincident peak	
\$/kWh		\$/kW		
0.1395	0.0745	19.34	14.44	


Total Costs					
Scenario	coincident peak costs	non-coincident peak cost	energy costs	total costs	PV curtailed costs
Basic Rule	256779	197762	-277640	176901	410.5
Controller	187399	193271	-255344	125326	313.6
Controller + Perfect forecasts	133683	169707	-253982	49408	281.2

https://building-microgrid.lbl.gov/

Upcoming Features

- Expanding the portfolio of controlled DERs
- Stochastic-based Model Predictive Control
- State/Fuzzy controller for 1 min base energy balance
- Planned islanding functionalities
- Interoperability with existing controllers (e.g. building management systems)
- Control based on interactions with end-users
- Wholesale energy and ancillary services market participation

THE END

Contact Information

Gonçalo Cardoso gfcardoso@lbl.gov

Nicholas DeForest ndeforest@lbl.gov

Miguel Heleno mheleno@lbl.gov

http://building-microgrid.lbl.gov/

