Case Study: Inglewood Distribution Automation

April 5th, 2018 NWESS

Outline

- Introduction to Puget Sound Energy (PSE)
- Distribution Automation Overview
- Project Implementation
 - DA Scheme Example
 - Adaptive Setting Groups
 - Device Coordination
- Design Challenges
 - Standardizing Equipment
 - Special Considerations

Puget Sound Energy (PSE)

- PSE is Washington State's oldest and largest utility
- Served the Puget Sound Region for over 135 years
- 1.1 million electric customers
- 400+ substations
 - 300+ distribution
- 1200+ substation feeder circuits
- Primarily a distribution focused electric utility

Distribution Automation Overview

- PSE Formed a task force in 2015 for vendor proposals
- Project benefits estimated at 20x their initial cost
- Per Project reliability
 benefits
 - 5,000 Customer
 Interruptions reduced
 - 700,000 Customer Minutes of Interruption reduced

Approaches to Distribution Automation

- Several Different Approaches to DA
 - Fault Targeting Only Switches
 - Exposes Entire Feeder to momentary outages
 - Little to no coordination study
 - High Speed Communications
 - GOOSE
 - Cost Prohibitive
 - Requires new equipment
 - PSE's Hybrid Approach
 - Designing the DA scheme around protection requirements and fundamentals

FLISR Installation @ PSE

System One Line

51P/51G PU Levels

Typical Distribution Time Current Curves

Line Lengths

Adaptive Setting Group Example - Fault

Adaptive Setting Group Example - Fault

Adaptive Setting Group Example - Restoration

Adaptive Setting Group Example - Restoration

Coordination Options

- Let the devices miscoordinate
 - DA software can detect this
 - Event analysis and troubleshooting
 - What happens if DA scheme is off?
- High Speed Communications
 - GOOSE
 - Existing infrastructure does not support GOOSE
 - Expensive to implement
- Turn all devices into "smart" switches
 - Exposes all customers to fault
 - No ability to sectionalize system if DA scheme is off

PSE's Hybrid Approach to DA schemes

- Design protection system as normal
- Any devices that cannot be coordinated are turned into automated fault targeting switches
- Take each feeder contingency separately
- Fault Tripping Off Mode
 - Program separate setting groups into reclosers
 - Setting the 51P and 51G elements
 - Removing the 51P1T and 51G1T elements from the trip equation
 - DA system enables setting group during feeder reconfiguration
 - Greater Flexibility in choosing which devices operate for faults
- Directionality can still be used for separate feeder pickups in the forward or reverse direction (requires voltage sensing)

Adaptive Setting Group Example – SG2

Alternate Feed – Distinct PU/TD

"Non Fault Tripping" Mode

Design Challenges

- Integrating DA scheme into existing infrastructure
- Documentation
- Maintaining Protection Standards
 - Proper CTI Margins Between
 Devices
 - Ensure EOL clearing criteria is met
 - Increased load limits, while maintaining sensitivity
- Standardizing Future Equipment
 - Minimum requirements for device to be included in DA
 - 51T, 52A, Amps, HLWS
 - <u>Recloser Controllers</u>

Microprocessor Based Feeder Breaker

Can you automate this please?

- Older Electromechanical based design
- PSE has over 1,260 Feeder Breaker relay Set
 - 10% Modern Day microprocessor based relay sets
 - 20% First Generation Microprocessor based relay sets
 - 70% Electromechanical relay packages

Trip Indication Relays

Trip Indication Relays

Documentation

- Standardize on minimum requirement for relay to be integrated into DA Scheme
 - Device Type
 - Generation of Device
 - Voltage Sensing
- What DNP points were available
- How were these points going to be mapped into the SCADA/EMS system
- Setting group documentation for planners and operators

IED-EMS Maps for DA

IED

RTU/EMS

Signifies point is latched closed, once picked up. Latched points must be reset before they are cleared.

Signifies control point in EMS.

Setting Group Tables for Reconfiguration

NAME	IED (LOAD LIMIT (A)	SETTING GROUP FOR RECONFIGURATION		
			KNM-23	ING-13	ING-15
KNM-23 X636	XXX	###	2	2	2
ING-13 X1424	XXX	###	1	1	1
ING-13 X5408	XXX	###	2	1	2
ING-15 X1829	XXX	###	2	2	2
ING-15 X420	XXX	###	2	1	2
ING-15 X76976	XXX	###	2	2	1
ING-13	EM	###	-	-	-
ING-15	EM	###	-	-	-
KNM-23	EM	###	-	-	-
SETTING GROUP 1 – RECLOSER WILL TRIP FOR FAULTS DOWNSTREAM					
SETTING GROUP 2 – RECLOSER WILL SIGNAL AND TARGET ONLY FOR FAULTS DOWNSTREAM					

Load Encroachment on non-directional elements

- PSE has a protection design standard of ensuring bolted end of line (EOL) faults cover 150% of the phase and ground pickups
- Maintains standard pickup values for reclosers down the feeder
- Allows higher load limit of circuit than 51P set point

Load Encroachment on a non-directional element

- Proper Supervision is required
 - Operates purely off Positive Sequence
 - Susceptible to assertion during unbalanced faults
 - Unbalanced faults contain all three sequence components
 - 32QR & 32QF set above highest normal imbalance of the system
 - 50P set higher than load limit, absolutely a fault

Future Topics and Discussions

- Distributed Generation applications in DA schemes
- Sectionalizer mode for reclosers
- Event Analysis
- DMS system integration
- Staffing Support

Questions?

PUGET SOUND ENERGY

Extra Slides – Curve Shaving

